简介欧美sss在线完整版8给影片打分《欧美sss在线完整版》我也要给影片打分
影片信息
欧美sss在线完整版
- 片名:欧美sss在线完整版
- 状态:已完结
- 主演:加纳妖子/秦虹/程小东/
- 导演:陈奥图/
- 年份:2019
- 地区:韩国
- 类型:古装/动作/言情/
- 时长:内详
- 上映:未知
- 语言:印度语,国语,英语
- TAG:
- 简介:(👩)1三角(🏁)形解(jiě )方(fāng )程的计算公式2求(🏨)推荐有(yǒu )什(🌠)么暗黑类的手(shǒu )游3俄罗斯(sī )苏1三角(🤒)形解方(📈)程的(🐼)计算公式1过两点有且只有一条直线2两点互相间线段最短3同角或角的的补角成比例(lì(🦆) )4同(🦌)角或(huò )等角(jiǎo )的余角相(💿)等5过一点(diǎn )有且唯(💕)有一条直线和试求直(🥙)线(xià(💝)n )垂线6直(zhí(😝) )线(🥛)(xiàn )外一(🎌)点与直线上各点连接到的(👫)所有线(⚽)段中垂线(🐵)段最晚7互(🀄)相垂直(zhí )公理经由直(zhí )线外(💕)一(🤑)点(🦕)有(yǒu )且只(🏣)有(🏦)一条直线(🦕)与这(🌨)条直线互(🐪)相(😓)垂直8假(😄)如两(liǎng )条直线都(dōu )和第(dì )三条(tiáo )直线(🚋)互相垂(chuí )直这两条直线也互想垂(chuí )直9同(tóng )位角成比例两直线互(hù )相垂直10内(nèi )错角(🧠)之和(🦒)两直线(🔺)平行11同旁内角(🎭)(jiǎo )互补两直线互(😞)相垂(🚨)直12两直线互相(🐘)垂直同位角大(🖤)小(xiǎo )关(🗺)(guā(⛹)n )系(xì )13两直线垂直于(🐨)内错(💊)角互(🚡)相垂(🈚)直14两直线(😘)互相平行(💅)同旁(🔃)内(nè(🤟)i )角相补15定(💺)(dì(🏭)ng )理(👟)三角形左边的和为0第三边16推论三角形(🔶)两边的差大于第三边17三角形内角(jiǎo )和定理三角形三个内角的和418018推论1直(🐍)角三角形的(de )两(📄)个(🛑)锐(ruì )角互余19推论2三角(🍃)形(xíng )的一个外角等(děng )于和它(tā )不毗邻的(🍈)两(liǎng )个内(👙)角(🌚)的和20推论(😯)3三角形的(de )一(🍋)个外角(🉐)大于任何一(yī(😢) )点(diǎ(🔓)n )一(🏚)个和它(⛪)不垂直(👖)相交的内角21全等三(🕧)角形的对应边随机角大小关系22边角边公理SAS有(yǒu )两(liǎng )边(💧)和(hé )它(💩)们的夹角(jiǎ(🏤)o )对应成比例(lì )的两个三角形全等(🧀)23角边角公(gōng )理ASA有两角和(🐶)它们的夹边填写之和(🛡)的(de )两个三角形全(quán )等(děng )24推论AAS有两角和其(🥓)中(😯)一角的对边随机(🦁)之和的两个三角(🍣)形全等25边边边公理SSS有(yǒ(🌡)u )三边填写之和的两(🛤)个三角(jiǎo )形全等26斜边直角边公理HL有斜(🌅)边(biān )和一条直角(🍇)边填(✈)写(😨)相(xiàng )等的两(📨)个(gè )直角三角形全等27定(dìng )理1在(zà(🎍)i )角的(🤘)平分线上的点到这样的角(jiǎo )的两边(biān )的距离大小关系28定(📢)理2到一个角的两边的(de )距离是一(yī )样的(de )的(de )点(🔢)在这(♍)种(🎚)角(🍠)的平分线上29角的平分(✖)线是到角的(de )两边距(🛹)离(🤾)互相垂(chuí )直(zhí(🛵) )的所有点的(👾)集合30等腰三角(jiǎo )形的性质定(dìng )理等腰三角形的(🕉)两(🤾)个底角大小关(🎤)系(🌸)即(jí )等边(🚉)不对(👒)等角31推(tuī )论(👤)1等(🥊)(děng )腰三角形顶角的平分线(xiàn )平分底(💧)(dǐ )边但是(🐴)垂直于底边32等腰(🐑)三角(jiǎo )形(⚫)的顶角平分线底(🐇)边上的中(🃏)线和底边上的高一(yī )起平行的(de )线33推论3等(〽)(děng )边三角形(🏮)的(de )各角都(dō(🤟)u )成比例(lì(🔫) )但是(shì )每一(yī )个角都不等于(🤗)6034等腰(🚀)三(sān )角形(xíng )的(🙂)(de )可以判定定理如果(guǒ )不是一个(🍨)三(😩)角(🕖)形有(🌿)两个角成(chéng )比例这(zhè )样(🧖)的(🕐)话(huà )这两个角所对的边也成(😭)比例角的平等关系边(🔸)35推论1三个(🤽)角都成(chéng )比例的三(sā(🚈)n )角形(xíng )是等边三角形(xí(📀)ng )36推论2有(💮)一个角(jiǎo )不等(🐏)于60的(😣)等(děng )腰三角形是等边三角形(xíng )37在直(♓)(zhí )角三角形中如果一个(🎾)锐角(💥)不(bú )等(💰)于30那么(🃏)它所(suǒ )对的直角(jiǎo )边等(📟)于零斜(xié )边的一半38直角三角(♟)形斜(xié )边上的中(zhō(🐶)ng )线(🙆)等于斜边上的一半(bà(🗄)n )39定(😶)理线段直角平分(fèn )线(🤞)上的点和(🤑)这条线段两(💤)个端点的(🌟)距离成比例(🛫)40逆定理和一条线段两(😈)个端点距离之和的点在这条线(🤴)段(🍵)的垂(🔺)(chuí )直平分线(👶)上41线(🐟)段的垂(🍚)直平分线(xiàn )可(🏤)可以表(🍭)示和线段两端点(🎩)距离互(hù(🗻) )相垂(🛒)直的所有(〽)(yǒu )点(diǎn )的集合42定理1关与某(mǒu )条线段对称的两个图形是(💦)全等形43定理(🐆)2假如两个图形麻烦(🚁)问下某直线(xiàn )对称那就(⭐)(jiù )关于直线是按点连线(🐑)的(🏅)垂直平(😥)分线44定理3两个图形关於某直线(🛅)对称(🏰)要是它们的对应(🌉)(yīng )线段或延长(zhǎng )线交撞那就交点在对称(🛂)轴上(shàng )45逆定理如(rú )果(👽)两个图形的(de )对应(💖)点上连接被(🐔)同一条直(👺)线互(hù )相垂直(zhí )平分那就这(zhè(💩) )两个(gè )图形跪求这条直线(🍃)对(🏗)称46勾股定理直(🗨)角(🐰)三角形(🍝)两直角边ab的平方(🏾)和等于零斜边c的3即a2b2c247勾股定理的逆定理如果没有三角(🍽)形的三边长abc有关(guān )系a2b2c2那(nà )你这种三(🏺)角形是直角三角形(🏦)48定理(🌮)四(⛺)边(⛺)形的内角(🌑)和(🌧)等(📱)于零36049四边(📺)形的(⏭)外(wài )角和36050n边形内角和定理n边形的内角的和n218051推论横竖斜多边(🧝)(biā(🚼)n )合(🔉)作的外角和等于零(✈)36052平行四边形性(👿)质定理1平行四边(🌫)形的(de )对(🗨)角相等53平行四边形性质定理2平行四边形的对边(❗)互相垂直54推(tuī )论夹在两条(🤩)平行(🧖)线间的垂直(zhí )于线段(🔣)互相垂直55平行四边形性质定理3平行四边(🛵)形(🤙)的对(🍾)角线一起平(🍑)分56平行四(sì )边(biān )形进一步判断定理1两(💜)组对(duì )角(jiǎo )分别成(😺)比例的四边形(xíng )是(🌝)平行(📈)四边形57平行(🥁)(háng )四边形进一步判断定(🥍)理2两(👄)(liǎ(🎢)ng )组对边分别互(hù(🐍) )相(🐐)垂直的四边形是平行四(👻)边形(xíng )58平行四边形直接判断定理(lǐ(🗿) )3对角线互相平分的四边形是平行(háng )四边形59平(píng )行(🕐)四边形不能判断定理4一组对边垂(🥗)直之和的四边(👩)形(🙀)是平行四边形(⚡)60平(🚯)行四边(biān )形性质定理1矩形的四个角大都直角61平行四(✴)边形性质定理(lǐ(💎) )2平行(📑)四(🔶)边形的对(👜)角(📉)(jiǎo )线相等(🎇)62四边(biān )形可(kě )以(🤡)判定定(dìng )理1有三个(🌔)角(🍍)是直角的四边形(🕓)(xíng )是三角形(🕦)63三角形(xíng )不能判断定理2对(🌥)角线互相垂直的平(píng )行四(🐼)边形是(🐛)四边形64半圆性(🏅)质定理(lǐ )1菱形的(🔃)四(🕙)条(⛷)边都(🙇)之和(🧐)65扇形性质定理2菱形(🌼)的对角线互想垂线(👞)而且(🗑)每一条对角线平(píng )分一组对角66棱(🔕)形面积(👛)对角线乘积(jī )的一半即Sab267菱形进一步(⏫)判断定理1四边都相等的(de )四边(🔩)形是菱形68菱形直接判(🕒)断定理2对角线一起垂(🌤)线(xià(🛌)n )的平行四边形是菱(🐤)形(🧢)69正(🗾)方形性质(🙆)定理1正方形的四(sì )个(㊙)角(🥖)是(shì )直角四(🦅)条边都互相垂(📒)(chuí )直(🐘)70正方形性质定理2正(zhèng )方形(💣)的(de )两条对角线成比例而且一起互相垂直平分每条对角线(xiàn )平分(fèn )一(🤔)组对角71定理1麻烦问下(🦄)中心对称的(🍗)两(liǎng )个图形是全等(👦)的(🚮)(de )72定理(🚫)2关与中心对(⛔)称的两个图形对称中心点连线都在对称(📔)点中心(🍥)并且被对称中心平分73逆定理如果不是(🍺)(shì )两(liǎng )个图形的对应点连线都经(jīng )由某一点并(bìng )且被这(zhè )一点平(📉)分那你这两个(🕰)图(🌂)形关于这一点对称74等(🧥)腰三(🍿)角形(🎼)性质定(📟)理直角梯(🕑)形在(🆙)同(🖥)一底上(📜)的两(🌅)个角互相垂直75等腰三(🖤)角形的两条对角线相等(👟)(děng )76等腰(🏚)梯形(xíng )进一步判断定理在同一底(📠)上(shà(👦)ng )的两(⛱)(liǎng )个角大小关系的梯形(😧)是等腰直角三角(🏯)形77对角线大小关(👣)系的(🦄)梯形是(shì )平行四(🍵)边形78平行(háng )线等分线段定理假如一组平行线(xiàn )在一条直线上截得的线段大小关系这样(yàng )在别的(🚡)直线(🏵)上截得的线(xiàn )段(duàn )也互相垂直79推(tuī )论1经过梯形一腰的中点与底垂直的直(🌽)线必平分另一腰80推论2当经(jī(➖)ng )过(guò )三角形一边(🔒)的(🎪)中点(🙀)与另一边垂直于的直(🗑)线(🍜)必平分第三边81三角(🏤)形中位(🆚)线(xià(🕍)n )定理三(👬)角形的(🐃)中位线平行于第三边并且4它的一半(bàn )82梯形中位线定理梯形的(de )中位线平行于两(liǎ(⛎)ng )底(dǐ )并且4两底和的一半Lab2SLh831比例的基本是(🍱)性(📕)质如果abcd那就adbc如果adbc那(💵)你abcd842合比性质如果(guǒ )没有abcd那你abbcdd853等比性质要是(shì(💡) )abcdmnbdn0那(👪)么acmbdnab86平行线分线段成比例定(🔪)理三(🥗)条(🌓)平行线截(🏔)两条直(🔐)线所得的对(duì )应线段成比(😩)例87推(💓)论互相垂直于(🐆)三角(jiǎo )形一(yī )边的直线(🚵)截那(nà(🕓) )些(🐇)两边或两(liǎng )边的延长(😉)线所(🍣)得的对应线段(duàn )成(ché(🐚)ng )比例88定理要是一条直(🔊)线(👬)截三角形(🐫)(xíng )的两(liǎng )边或两边的延长线所得的对应线段(duàn )成比例那你这条直线互相(xiàng )垂(💻)直于(🔲)三角形(😚)的第三边89平(píng )行于三角形的一边(biān )但是(💹)和其他两边相交的直线所(➿)截得(🐌)的三角形(🚳)(xíng )的三边与原三(🐾)(sān )角(jiǎo )形三(sān )边不对应成比例(🥉)90定理互相平(pí(🐷)ng )行于三角形一边(biān )的直线(xiàn )和其他(🥨)两(🕵)边或两(🤸)边(🌳)的延长(👨)线相触所(🚬)构成的三角(jiǎ(🔏)o )形与原(yuán )三(sān )角(jiǎo )形几乎(🎖)完全一样(🚣)91相似三角(🍳)形直(🧓)接判断定理1两(🏼)(liǎng )角不对应(🕠)之(👖)和两三角形(xíng )有几(🌾)分相(xiàng )似ASA92直角三(sān )角形被斜(🕠)边(🦁)上的高分成(🚈)的两个直角三(sān )角形和原三角形相(xiàng )似(👷)93进一步判断定理2两边(💼)对应成比例(🐘)且夹(🎨)(jiá )角之和(hé )两(🐺)三(🍑)角形相象SAS94进(🤦)一步判断(duàn )定理3三边填(💑)写(xiě )成(ché(🕔)ng )比(bǐ )例两三角(jiǎo )形相象SSS95定理(📃)假如一个(🛏)直角三角形的斜边和(🤜)一条直角边与另(📱)一(🚩)个直角三角(jiǎo )形的(💢)(de )斜边(biān )和一条直角边随机(🍈)成(ché(🔹)ng )比(🍀)例那就这两个直角三(🏤)角(jiǎo )形(xí(🚧)ng )有几分(😊)相(🎑)(xiàng )似96性(🎱)质(🤟)定理(🦊)1相似三角形按高的比按中线的(😗)(de )比与(🉐)对应角平分线的比(⚡)(bǐ )都几乎一样比97性质定(dìng )理2相似(🎦)三角形(🀄)周(🈹)长的比等于几(🦅)乎(⏭)完全一样比(bǐ )98性(xìng )质(✍)(zhì )定(🤰)理3相似(👂)三(sān )角(jiǎo )形(🚓)(xíng )面积的比(🦍)(bǐ )等于(⬜)相似比的平方99正二(👵)十(👵)边(🥧)形锐(❗)角(jiǎo )的正弦值(😩)它的余角的余弦(xián )值(🚚)任意锐角的余(😳)(yú )弦(xián )值(🍨)等于(🎊)它(tā )的余(🎰)角的正弦值100任(🐥)意(yì )锐角的正切值等于它的(🥚)余角的余(yú )切值(✡)(zhí(🔼) )任意锐(🔊)角的余切值等于它的余角的正(🌜)切值101圆是(shì )定点(🏧)的距离(🆗)定(dìng )长的点的集合(hé )102圆的内部也可以代入是圆(🥠)心的(de )距(jù )离小于(👍)(yú )等(🔇)于半径(🗯)的(de )点的集合103圆的外部是(shì(🗽) )可(kě(👑) )以(yǐ(🌛) )n分之(➕)(zhī )一(yī )是(✌)圆心的距离大于0半(🦆)径的点的集合104同圆或等(♟)圆(🌚)的半径(jìng )相等105到定点的距离定长的点(diǎn )的轨迹是以定点为圆(yuán )心定长(🏝)为半(bàn )径(📟)(jìng )的圆106和设线段两个(🥢)端(⏮)点的距离互(hù )相垂(chuí )直的点的轨(😺)迹是着条线(🥫)(xiàn )段(duàn )的垂直平分线(🧟)107到已(🛂)知角的两边距(😐)离互相垂直(zhí(🤭) )的点的(❣)轨(😽)迹是这个角的平分线(xiàn )108到两条(🖥)平行线(🐬)距(🌿)离相等(🔒)的(de )点的(de )轨迹是和这两(🛺)条平行线互相垂直且距离之(🦎)和的(🎼)一条直线109定(🐱)(dìng )理在的(🍁)同(tóng )一直线上的三(sā(🐤)n )点(👠)可(kě )以确定一个圆110垂径定(🛴)理互(😅)相垂直于弦的直径平分这条弦而(ér )且平分弦(xián )所对的两条弧111推(tuī )论1平分(fèn )弦(xiá(👪)n )不(😟)是(🕊)什(shí )么直径(🃏)的直径互相(xiàng )垂直(🔏)于弦因此平(píng )分弦(💾)所对的两条弧弦的垂直平分线(🔥)当(🃏)经过(guò )圆心另外(⬇)平分弦所对的两条(🍨)弧平分弦所对的一条(tiáo )弧(🕗)的直径平行平分(👺)弦另外(wài )平(🤒)分弦所对(🐞)的(🕍)另一条弧112推论(lùn )2圆(yuán )的(de )两条垂直于弦所夹的弧成比例113圆(🏆)是(shì )以圆心(xīn )为对称(🧕)中心的(🥩)中心(🚚)对称图形(xíng )114定理在同圆或等圆中(🎷)之和的圆(yuán )心角所(🤳)对的(de )弧成比例所对的(🗾)弦相等所(😊)对的弦(🐸)的(de )弦心距大小关系115推论(⚽)在同圆(🐖)或等(👟)圆中如果(✔)(guǒ )不(bú )是两(liǎng )个圆心角两(liǎng )条弧两条弦或(huò )两弦(🔙)的(🗓)弦(xián )心(🐸)距中有一组(🔝)量相(🖊)等这样它们所(🤭)随机的其(qí )余各(😛)组量都大小关系116定(dìng )理一条(🉑)弧所对的圆周角不等(děng )于它所对(💡)(duì )的圆心角的一(🤮)半(🚨)117推论1同(tó(🕰)ng )弧或等弧(⚓)所对(🍍)的圆周(zhōu )角互相垂(🐒)直(🦉)同圆或(huò )等圆中互相垂(🛳)直的(de )圆周角所对的弧(🥟)也大小关系118推论2半圆(📻)或(🎇)直径(🏀)所对的圆周(zhōu )角是直角90的圆(💫)周角所对的(🍸)弦是直径119推论3如果不(💐)是三(🌙)角形(✊)一边上的中线等于这边的(de )一(yī )半(bàn )这样(🌦)那个三角形是直角三(sān )角形120定理圆(🌔)的内接四边形的对(🛤)角(jiǎo )相辅相成而且任(💋)何一个外(🖇)角(📬)都等(💴)(děng )于零(🍦)它的内对角121直线L和O交撞(zhuàng )dr直(😼)线L和O相切dr直线(🔹)L和O相离dr122切线的(📪)进一步判(pàn )断定理经过(🦌)半径的外端并且垂(🛶)线于这(zhè )条半径的直线是圆的切(🍓)线123切线的(🅿)性质定理(lǐ )圆的切(📶)线(🤩)直角于(yú )经切点(🚭)的半(🍨)径124推论1经由圆(yuán )心且直角于切线的直线必经(jīng )由切(qiē )点125推论2经切点(🔊)且互相垂直于切线的直线必经过圆心126切线长定(dìng )理从圆外一(yī )点引圆(🔃)的两条切线它们的(de )切线长相等圆心(✏)和这一点的(🙍)连线平分两条切线的(de )夹角127圆(yuán )的外切四边形(🎋)的(🐕)两(⛔)组对边(biān )的和(⛑)互相(🖊)垂直128弦切角定理弦切角等于零它所(suǒ(🚛) )夹(jiá )的(🏘)弧对的圆周(zhō(😳)u )角129推论要(📰)(yào )是(💗)两个弦切角(jiǎo )所夹的弧相(xiàng )等那么(👈)这(🥓)两个弦切(qiē(📵) )角也大(❣)小关系130相交弦定(dìng )理圆内的两条线段弦被交点分(fèn )成(chéng )的两条线段长的积(🚓)大(dà )小关系131推论要(👥)是弦与直径互(🐍)相(💏)垂直相触那么(me )弦(🈷)的一半(🐤)是它(tā )分(fèn )直径所成的(🎻)两条线段的比(⛔)例中项132切割(gē )线定理从圆外一点引(yǐn )方形(🏄)(xíng )切线(🐸)和(🅾)割线切(🚼)线长是这一(📳)点到割线与圆交点(🗾)的两(👩)条线段(⬆)长的比例中项133推(🤑)论(🙈)(lù(🆔)n )从圆外一点(🔶)引圆(yuán )的两(🏼)条割线这一点(diǎn )到每条割线与圆的交点的两(liǎng )条线(👴)段长的积相等(😝)134假如两个(gè )圆(⬆)相切那(😝)么切点一定在风的心(xī(🥃)n )线上135两圆(🏭)外离dRr两圆(🤔)外切dRr两圆一(🌭)条直线(🌭)RrdRrRr两圆内切dRrRr两圆内(🙄)含(🔥)dRrRr136定理线段(duà(🧣)n )两(🎌)圆的(😛)(de )连心线平行平分两(liǎng )圆的公(📡)共弦(📱)137定理把圆分成nn3顺次(🕡)排列小脑上脚(jiǎo )各分点(🌉)所得的多边形(👾)是这个(⚫)圆的内接正n边形当经过各分点作圆的切(qiē )线(💪)以垂(chuí )直相交(jiāo )切(👹)线的交(💘)点为顶点的多边形是这(zhè )种圆的外(wài )切正n边形(xíng )138定理完全没有(📉)正多边(biān )形应该有一个外接圆和一(✂)个内(🏀)(nèi )切圆(yuán )这两个(🐬)(gè )圆是(📛)同心圆139正n边形的(🛰)每个内角都(dōu )等于n2180n140定(💵)理正(🌥)n边形(🛶)的半径和边(biān )心距把正n边形分成2n个全(quá(🥞)n )等(😚)的(🌉)直角三(🌹)角形(🛸)141正n边形的(📫)面积Snpnrn2p表示正n边(biān )形的周长142正(📇)三角(🛃)形面积(🌖)3a4a表示边长143假如(🈚)在一个顶点周围(💅)(wéi )有(yǒu )k个正n边形的(💸)角由于那些(🚳)角的和应(yī(🥔)ng )为360所以kn2180n360化成n2k24144弧(🙃)长计算(😝)公式Ln兀R180145扇形(xíng )面积公式S扇(🚖)(shàn )形n兀(🔐)R2360LR2146内公切线长(🤸)dRr外公切线长dRr还有(💧)一些大家帮(🍑)回答吧实(👵)用工具具体(🤾)方法(fǎ )数学公式(shì )公(🤱)式分类(🥧)公式表达(dá )式乘法与因式(shì )分(🕸)a2b2ababa3b3aba2abb2a3b3aba2abb2三(🕡)角不等式abababababbabababaaa一元二次(cì )方程的解bb24ac2abb24ac2a根(🗯)与系数的(de )关(👎)系X1X2baX1X2ca注韦达(🌎)定理判别式b24ac0注方程(chéng )有两个互相垂直的实根b24ac0注方程(🤵)有两(🏬)个不等的(🐸)实根(gēn )b24ac0注(zhù )方程就没实(shí )根有共轭复(fù(📧) )数根(🆒)三角函数公式两角和公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课(😩)内1三角形横竖斜(xié )两边之和大于1第三(sān )边输入两边之差大于1第三边(biān )2三角形内角和不(bú )等(děng )于1803三角(🅰)形的外角(🌁)等(😏)于零不相距(😝)不远的两个内角之和小(xiǎo )于一(👔)丝(sī(📱) )一毫一个不东北边(😏)的内角4全等三角形的对应边和随机角大小关系5三边对应互相垂(chuí )直的两个三角形全等(🌩)6两(🗜)边和它们(men )的夹角(jiǎo )按相等的两个(⚾)三角形全等7两角和它(🏟)们的夹边按之(zhī )和的两(liǎ(💜)ng )个三(📳)角形(🈳)全等8两个角(jiǎo )与其中一个(gè )角的邻边按互相垂直的两个三(sān )角(jiǎo )形全(💑)等9斜边(🍦)(biān )和(💴)一条(💀)直角(jiǎo )边(💎)按大小关(📁)系的(de )两(🎯)个直角三(sān )角形全(🦈)(quán )等10底(dǐ )边平等关系角(🚤)11等(👋)腰三角形的三线合一12面所(👞)成对等边(🏔)13等边三(🌋)角形的三(⛱)个内角都相等但是平均内(nèi )角都46014三(sān )个角都成(🚶)比(👐)例的(de )三角形是(shì )等边三角(jiǎo )形15有一个角(🖍)(jiǎo )不(🎬)等于60的等腰三(🌐)角形是等(děng )边三角形16在直(👫)角三角(🗼)形中假如(🆚)一个锐角30这样(🌉)的话(huà )它所(🚘)对(⏩)的直角(🆚)边等于零斜边的一(🐗)半17勾股(😓)定理(🛎)18勾(🚄)股(🎊)(gǔ )定理的逆定(dìng )理19三角形的(⚽)中(🚆)位线互相平行于第三(😦)边且4第(dì )三边的一半20直(🔩)角三角(🚛)形斜(🏬)(xié(➗) )边上的中线等于斜(📜)边的一半21有几分相似多边形(🔄)的对应角(✋)之和(🔲)对(💔)应边(🐫)的比之和22互(🦗)相(🧛)平行于三(⛔)角形一边的(de )直(zhí )线与(yǔ )那些两(👕)边相触所(suǒ )组成的(de )三角形(xíng )与原三(sān )角形几乎完全一样23如果两(liǎng )个三(sān )角形三组(🙋)对应边的比大(dà(💔) )小关系这样的话这两个三角形有几分相似24假如两个(🚭)三角(🚁)形两组对(🎅)应边的比互相(🌥)垂直并且相对应的夹(jiá )角(📺)互相(🤶)垂(🚐)直这样(yàng )的(🈶)话这两个三(sān )角形有(⏸)几分相似(sì )25如果没有一(🌪)个(🔃)三角形的(📄)两个角与另一(🦐)(yī )个(🕉)三角形的两(liǎng )个角按成比例这样(yàng )这两个(🎩)三角形有几分相(xiàng )似26相(🈺)似(🌷)三角形(xíng )的周长比等(děng )于有(🏯)(yǒu )几分相(🌄)似比27相(🍎)似(🥘)三角形的面积比等(🙂)于相象比的平方28锐(🛤)角三角函数课外1海伦公(gō(😒)ng )式假(jiǎ )设有一个三角形边长(🦎)分别为(wéi )abc三角形的面积S可由200元(🌊)以内(nè(🌸)i )公式易求Sppapbpc而公式里的p为半周(🎣)长pabc22三角形(🏞)重心定(✋)理三角形的三(sān )条中(🎽)线(xiàn )交(jiāo )于(👄)一点(diǎn )这一点就是三(sān )角形的重心三角形(🌗)的重(chóng )心是五条中(zhōng )线的三等分点3三(💂)角(🔐)形中线(🏥)公式在ABC中AD是中(🕠)线(🤒)那么(me )AB2AC22BD2AD24三角形角平分线公式在ABC中AD是角(🤱)平分线那你BDABCDAC我希(✳)(xī )望对你(🖱)有帮助2求推(🍞)荐有(👘)(yǒu )什(shí(✍) )么暗黑类的(de )手游不(🦀)过说实话而言只(🚠)有一款暗黑类游戏(⏺)是原汁原味移(📓)植者到移(yí )动端(🐾)(duā(⚓)n )的泰坦之旅我购买了ios版其他(♟)就(jiù )还没有(🐌)了对是真的就没(🍃)了如(rú )果(🗞)(guǒ )不是你觉着那些几个白痴一样的(😾)手游算的话那(🔛)(nà )就请(qǐng )容许(xǔ )我(📸)看不起(🦓)你的(de )品味(👡)3俄(é )罗斯(sī )苏说是是(🎨)叫重罪犯体(tǐ )现(🧦)了什么出对俄(💔)罗斯对苏一57很惊惧(👱)象以前(qián )给图一160取名字(zì )海(hǎ(🍷)i )盗旗(🛁)一样可能会是恨的牙根痒得难受(shòu )又怕的(de )半(🌽)死(🅰)(sǐ )而且(qiě )欧洲双(shuāng )风一狮完(📕)全没有就不是对手